Authorisation requirements

Prior safety assessment of innovative foods – additives, GMOs, novel foods Bernd van der Meulen, Renmin 25 March 2017

Overview

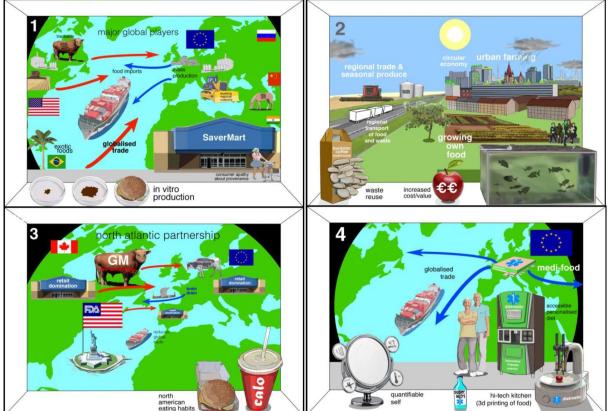
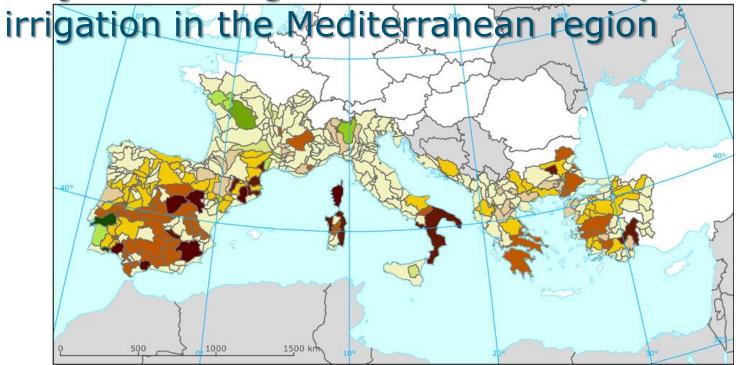
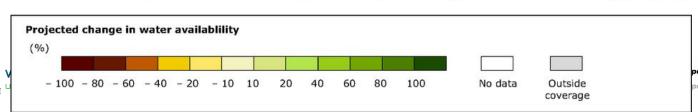
- Materials
- Urgency
- Food law structure
 - Safety
- Food additives
- Novel Foods
- GMOs
- Experience and problems

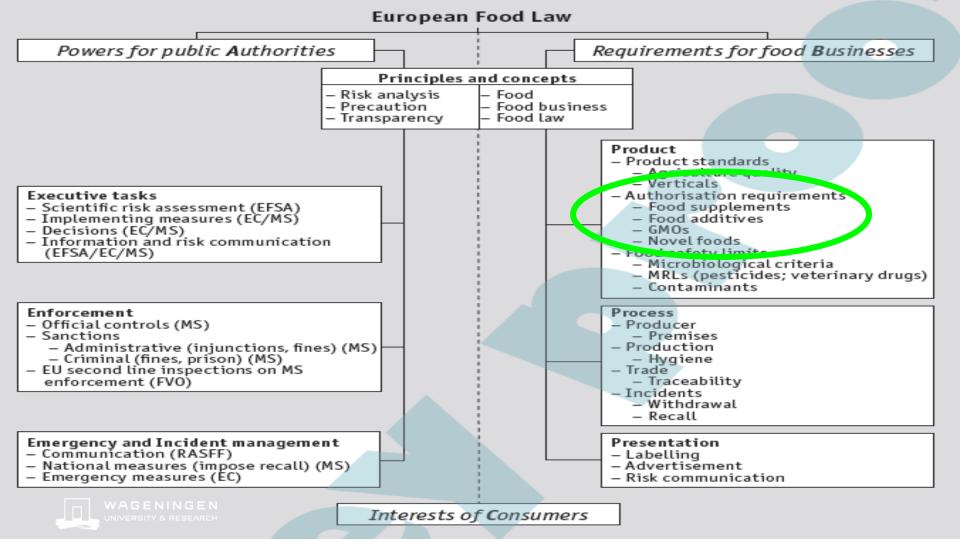
Materials

B.M.J. van der Meulen, H.J. Bremmers, J.H.M. Wijnands and K.J. Poppe, Structural precaution: The Application of Premarket Approval Schemes in EU Food Legislation http://www.academia.edu/12576251/Structural Precaution The Application of Premarket Approval Schemes in EU Food Legislation

- Sources
 - NFR regulation 2015/2283
 - GMO regulation 1829/2003

EU JRC foresight scenarios 2050


Fig. 1. The four foresight study scenarios

Projected change in water availability for

What, who, when?

Safety		Not- regulated	Regulated
	Review		
Inherent properties		14: effect	Category: Additives, GMOs, novel foods
	Ex ante	Self assessment	Authorisation
	Ex post	Enforcement	Enforcement
Condition		14: effect	MRLs, shelf life
	Ex ante	Self assessment	Self assessment
	Ex post	Enforcement	Enforcement

Safety

- Structural
 - Properties of the product
 - Toxicity
 - Etcetera
- Incidental
 - Condition of a food due to:
 - Deterioration
 - Contamination
 - Etc.

Structural safety

- Conventional foods
 - Assumed safe on the bases of experience
 - Unless evidence shows otherwise

- Non conventional foods
 - Evidence of safety required
 - → authorisation procedure

Questions to science

- Identify risks
- Is it unsafe?
 - Presumption of safety

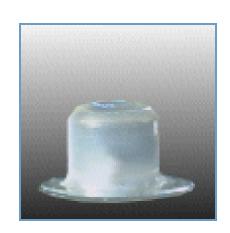
- Exclude risks
- Is it safe?
 - Presumption of unsafety ('a priori hazardous')

Authorisation requirements

- 1962 onwards: colours, sweeteners & other additives 'synthetic foods'
- 1997: novel foods
- 2002: food supplements
- 2002 (GFL): general ban on unsafe food
- 2004: GMOs
- 2005: novel packaging
- 2008: enzymes, flavourings
- 2015: novel foods

Risk analysis as condition for market access

- EC Communication on precaution
- Reversal of burden of proof
- Ban +
 - Permit on application
 - Individual, or → first mover advantage
 - General → second mover advantage
 - Science provided by applicant
 - Risk assessment = checking the homework



Additives I

- Principle: prohibited unless authorised
- Additive: 'a substance not normally consumed as a food in itself and not normally used as an ingredient in a foodstuff for its nutritive value'
 - Sweeteners
 - Colours
 - Preservatives
 - Antioxidants
 - Modified starches
 - Gelling agents
 - Emulsifiers
 - Stabilisers
 - Anti-caking agents, etc.

Additives II

- Positive lists
 - Which additive
 - In which food
 - Which purity
 - Which quantity
- EU authorisation procedures
 - Technological need
 - No hazard
 - Not misleading

- Periodic re-evaluation
- Generic authorisation
- E-number

Additives III

- FIAP Food Improvement Agents Package
 - Common procedure Reg. 1331/2008
 - Enzymes Reg. 1332/2008
 - Food additives Reg. 1333/2008
 - Flavourings Reg. 1334/2008

Novel foods


- Not consumed in EU before 1997
 - Modified molecular structure
 - Micro organisms, fungi, algae
 - Mineral origin
 - Plants, Animals
 - Cell culture
 - Nanotechnology
 - New production process

Objectives of the new Novel Food Regulation

- Ensure food safety
- Functioning of the internal market
- Support innovation
- Streamline procedure
 - Clarify definition
 - No substantial changes ...
 - Simplified procedure for traditional foods from 3rd countries (a.k.a. exotic foods)

Keukenmachine die de keuken overbodig maakt

Pizza, snoep, koek: je kunt het allemaal 3D-printen. En het smaakt. Bedrijven en onderzoekers zijn volop bezig met de techniek, die koken overbodig kan maken. 'De grote voedselbedrijven missen de boot als ze hier niets mee doen.'

Jelmer Luimstra

Geprint di-ijsje

ten kan ook zonder cartridges, zo toont de damse startup Melt Icepops, die waterijs maakt met een 3D-printer. 'We gebruiken de printer om goedkoop mallen te produceren, zegt Rennen (27). 'Die mallen kunnen we in aller lei vormen printen: we hadden al een robotiisie en een Matthiis van Nieuwkerk-iisie. Het bedrijf staat vee op festivals als Sail. Amsterdam Dance Event en KLM Open. 'Ooit printten we een isje in de vorm van dj Carl Cox," vertelt Rennen, "Ik sprak laatst iemand die bij een show van Cox was ge-weest in Australië. Wat ons iisie priikte daar op een metershoog scherm.' Levert het ook wat op? 'In 2014 hadden we €60.000 om zet en in 2015 is die gestegen.' Buitenlandse

ebruari 2015, de Albert Heijn XL in Eindhoven. Een grote groep mensen kijkt gebiologeerd naar een koffertje dat uiterst gedetailleerd chocoladefiguæn ngt op taarten. Op een tablet kunnen klanten hun eigen figuren tekenen. die het apparaat daarna als topping aan brengt op de taart. Het koffertje is een 3D-printer die geen plastic, maarvoedsel print. Het betreft een test van drie dagen. Niemand weet of devoedselprinters net terugkomt in de supermarkt, maarde ervaring leert dat het snel kan gaan met innovaties in deze industrietak.

Volgens CB Insights, een venture ca-pital dat abase, staken durfkapitalisten vorig jaar \$5,7 mrd in start ups binnen devoedselsector een forse stijging. En dat betreft niet alleen technologische start-ups. Vooral in de bezorgdiensten gaat het hard. In 2012, zo berekende TechCrunch, stopten durfkapitalisten \$25mln in voedselkoeriers. In 2015 bedroegdit al \$1,2 mrd.

Ook de 3D-printmarkt in brede zin staat aan de vooravond van een snelle groei, zo voorspelt consultant Wohlers Associates. Het schatte de marktomzet voor 2014 nog op \$4,1 mrd. In 2020 moet die kunn en groeien naar \$21 mrd.

Het 3D-printen van voedsellijkt misschien nog toekomstmuziek, maar wereklwijd wordt er al volop mee geëx-perimenteerd. Het Amerikaanse bedrijf 2D Systems werkt aan snoepprinters chocoladeproducent Hershey's experi menteert met een chocoladeprinter. De Catalaanse overheid opende vorigjaar eenvoedsellabwaar 3D-experimenten plaatsvinden. NASA ontwikkelt een apparaat om pizza's in de ruim te te printen.

Cartridges

Hoe werkt dat: een maaltijd 3D-printen? Net als een normale printer maakt de voedselprinter gebuik van cartridges. Maar in plaats van inkt bevatten die ge pureerd voedsel. Dit print de machine vervolgens kagje voor laagje uit, zodat eenvoedingsproduct ontstaat. Zijn deze voedsekartridges straks net zo normaal als koffiecapsules? De machines zijn daarvoor nu nog te traag, in gewikkeld en vaak te duur, zegt Jelle Groot (27), die voor Rabobank bezig is met voedsel-innovatie. Maar als deze obstakels worden weggenomen, dan kan de techniek ontwrichtend werken voor delen van de

voedselproductieketen. 'ik voorzie een sneeuwbaleffect', zegt Groot, 'Er ontstaat dan een tak die de vul ling van cartridges produceert, een sec-

Visuele zorgvoeding TNO krijgt met mooi geprinte en eetbare aardappels met vlees ouderen in de zorg weer aan het eten

tor die recepten en designs on twikkelt en een tak die de voedselprinters produ ceert.' Ook ziet hij mogelijkhedenvoor restaumnts: 'Een voedselprinter kan de kok helpen, door bijvoorbeeld pasta in bijzonderevormente printen. Een voed selprinter kan dat gedetailleerder dan je met de hand zou kunnen.' De Spaanse sterrenchef Paco Pérez laat zich momen teel al bijstaan door een voedselprinter.

Diverse Nederlandse ondernemers pionieren al met voedselprinters. Een van hen is Jeanine Hendriks (48). Haar bedrijf By Flow bracht vorig jaar het cho coladeprintende koffertje naar Albert Heijn. Op het kantoorvan ByFlow, op een bedrijventerrein voor start-ups in E in dhoven, zit Hen driks tussen 3D-prin tens in alle soorten en maten. Naast haar staat het chocoladekoffertje. Het is een multifunctioneel apparaat, vertek ze; je kunt er plastic en hout mee printen maar ook hummus, chocolade en kaas. 'Ons bedrijf is opgericht met het idee dat 3D-printers gemakkelijker moeten wor-den. Veel mensen vinden de apparaten te ingewikkeld: je moet ze vaak zelf in elkaarzetten en er komt veel program

meren bij kijken. Wij wilden daarom een gemakkelijk bruikbaar apparaat maken. Albert Heijn weet nog niet of het de printer in meer supermarkten wil plaat-sen, vertelt Hendriks, maarze praat wel met de Engelse taarten- en broodprodu cent Finsbury, die de 2D-printers emotschalig naar de Britse supermarkt keten Tesco wil brengen. Voor supermarkten die bezoekersaantallen zien dalen kan zoiets een belevingselement toevoegen' zegt Hendriks. 'Ik denk dat grote voed selbedriiven de boot missen als ze niets

met de techniek gaan doen. Toen By Flow in 2015 een eerste ver sievande printergereed had, was er meteenyeel aandacht. Het bedrijf vond een investeerder voor € 100.000 en de printer werd gedemonstreem in Pariis Madrid en Rome. In Londen opende By Flow samen met chef-koks voor enkele dagen een pop-uprestaurant waar het vijl 3D geprinte gangen serveert, zoals car-paccio en guacamole. De mogelijkhe den voor 3D-geprint voedsel zijn groot zegt Hendriks. 'Zo kun je zelf s appetijte liik uitziende gerechten 3D-printen op

basis van algen of insecten Ook bii TNO, een kleine drie kilometervan By Flow, staan twee kamers tot de nok toe gevuld met 3D-printers Kjeldvan Bommel (45) is hier dagelijks tevinden: hii doet fulltime onderzoek naarfood printing. De techniek kan ook nuttig zijn in de zorg, denkt hij. 'Je kunt zelf bepalen welke voedingsstoff de cartridges, dus in de maaltiid stopt' zegt hij. 'Zo kun je aangepaste voeding maken voor kinderen, sporters of men sen met voedings problemen.' ce-project af, dat werd gefinancierd door

& Leonie Smelt (32)

Goedkope mallen

Kjeld van Bommel

TNO, te Eindhoven

Gemakkeliik

3D printers makkelijker maken

Chloé Rutzerveld

Food designer, te Eindhoven

Gezonde geprinte

de EU. Ouderen in verzorgingstehui met kanw- en sliknmblemen waren ge tijd aangewezen op gepureerd, ve loos voedsel, wat ze ging vervelen. H gevolg: minder eeflust. Met de voed printer maakte TNO zechte, gemald te kauwen groenten, aardappelen, v en vis, met de juiste voedingsstoffen maaltijd die aantrekkelijk oogt en d ouderen makkelijk kunnen eten.

Chipspoeder

Voedselprinters kunnen ook bijdragen aan een betermilien denkt Van mel. Hij denkt dat met de techi minder grandstoffen nodig zijn voo een maaktijd. Je print puur wat je no hebt, waardoor je minder afval hebt Daarnaast is er minder voedseltrans nodig, omdat de cartridges vanwege denvervoerd. Tetransporteert bijvo

beeld slechts het poedervoor de chi niet de chipszakken, die vol lucht zie Maar wanneerzal het 3D voedsel ten echt doorbreken? Ten eerste me de machines snellerworden, denkt Bommel. Ik zie wel verbeteringen. jaargeleden duurde het een kwartie een stukje pasta uit te printen. Nuvi tien seconden.' Ook moeten de voed printers een complexere textuur kur maken. Van Bommel laat een 3D ge koekje zien. 'Kijk, de structuur is no

grof: dat moeten we nog verbeteren. En de prijzen van de machines me ten omlaag. Die kosten nuvaak nog duizenden euro's. Maar ook daarzie hijvoomitgang. 'Natural Machines brengt dit kwartaal een geavanceere voedselprinter op de markt van € 10 Het is wachten op goedkopere klone uit lan den als China. Dan kan het sr

De foodprinting-markt wordt nu mineerd door 3 D-geprinte koekjes, colade en snoep. Maarkunje erook gezonds mee maken? Dat wilde de E hoven se food designer Chloé Rutzer (23) weten, toen TNO haar in 2013 v voor een stage in food printing. 'Ik w niet eens wat de techniek inhield', v Rutzerveld in haar atelier, dat vol lig groenten. Na drie maanden onderze en gesprekken met wetenschappers lowam ze met 'Edible Growth': gezor geprinte voeding die bestaat uit een ledig eetbaar kuipje waaruit door sp en gisten kleine paddenstoeltjes gre Na het printengroeit dit kleine kuip

vijf dagen tot een eetbaar geheel. Op 21 april 2015 vond in Venlo de ste 3D Food Printing Conference pla georganiseerd door het Eindhovens Jakajima. Eind 2014 klopte By Flow bij Pleter Hermans, ceo van Jakajim met het idee. 'Ik twijfelde aanvanke zegt Hermans. 'Was de techniek nie pril?' Toch besloot hij het te doen. H evenement werd voor de helft gefins cierd door 'grote en kleine spelers in

voedingsindustrie'. De gok pakte goed uit voor Herms Zijn evenement trok 150 profession in food printen uit de helewereld. O april komt er een vervolg. Vooral de spelers zijn geïnteres seerd, zoals vo selbedrijven en catemars. Ook spree een medewerker van het European S Agency. 'Zij willen straks een station de maan bemannen en willen kijker ze daarook voedselprinters kunnen stalleren.' En zal de voedselprinter s ook te vinden zijn op het aanrecht?* ker weten doe ik dat niet', zest Hem Wel denk ik daarbij vaak terug aan bekende filmpje uit 1999 waarop m sen gevraagd werd of ze een mobiele foon willen. Altijd bereikbaarzijn? dat wilden ze absoluut niet, maar m diezelfde mensen nu eens zien.

Jelmer Luimstra is redacte

1930

injectie voor het

1929

sutomaat komt op de marktvoor

1948

1954 Start van het

1986 van genetisch gemodificeer 2012

NYT-voedsel ecensent Mark Bittman eet ne

Union list

- Inclusion by European Commission
- Criteria
 - The food does not, on the basis of the scientific evidence available, pose a safety risk to human health
 - Does not mislead consumer
 - Not nutritionally disadvantageous
- Application by business (or initiative EC)
- Safety assessment by EFSA

Exotic foods

- Globally some 7.000 plant species used for human consumption
- In EU some 300 traditional
- **2**,000 insects
- → high potential
- After 1997 just a hand full authorised as novel food (noni, baobab)

Food and Chemical Toxicology 46 (2008) 1681-1705

Risk management and risk assessment of novel plant foods: Concepts and principles

Ib Knudsen a, Inge Søborg b, Folmer Eriksen , Kirsten Pilegaard , Jan Pedersen a,*

*Department of Textcology and Bilk Assument, Stational Food Institute, Technical University of Danmark, More king Boyade 19, DE-2360 Suborg, Dermark.
*DEH, Centre for Institutions at and Textcology, Agent Alik 3, DE-2379 Horsholm, Denmark.

Received 22 March 2007; accepted 7 January 2008

Abstrac

Worklivide 30 food plants deliver 99% of human daily intake of plant food colories and around 300 other plant species are delivering the last 9%. There soone 300 food plants are likely to be unsaidered insditional in Europe, while the masky 7000 other plant species traditionally used in the human food supply in other parts of the world may be considered novel in Europe.

Novel food regulation is stready in force in the European Community, Australia/New Zealand and in Canada where the novel plant foods need to go through a premarked assessment procedure. This paper propose eiteria and definitions to be used in determining novely of a plant food and also propose a safety assessment approach for novel plant food with no or limited documented history of safe consumption.

A 2-step management procedure is recommended for a mooth introduction of fruits and vegetables; first to establish the novelty and second to define and commit resources for the safety assessment. The procedure builds upon the use of a worldwide network of global, regional, local and ethnobotanical positive lists for food plants to guide the decision on novelty at the first step and to enable the safety assessment at the second step.

© 2008 Ekevier Ltd. All rights reserved.

Reyword: Novel foods; Traditional foods; Plant foods; Regional Into: History of safe use; Positive lists for food plants.

1. Introduction

This paper deals with one segment of the novel foods, namely novel plant foods, with the main focus on novel foods derived from plants not known in the country or region. The paper does not deal with foods derived from genetically modified plants, but only foods derived from cultivated plants that may be developed through conventional breeding or plants from wild sources.

For nearly all plant foods it is very difficult to obtain scientific data, which document their history of safe consumption even though they may have been eaten for several hundreds of years. Nevertheless according to the regulation

0276-6915/5 - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.fd.2008.01.022 of some countries there is a need to establish the safety of novel plant foods in order to accept their introduction on the market. While there already exist well established paradigms for safety assessment of isolated and extracted plant products like augurs, fats and defined chemical entities e.g. flavours, there are no commonly accepted international approaches to assess the safety of complex foods such as fruits, vegetables and other plant parts derived from novel sources.

The purpose of this paper is to propose a set of basic principles and concepts for safety assessment of plant foods, with a main focus on new fruits and vegetables with no history of safe consumption in a country or region and with the final aim to propose a procedure for the safety assessment based upon up-to-date scientific knowledge. This paper is based upon the work by a working group

^{*} Corresponding author. Td.: +45 7234 7610; fax: +45 7234 7699. E-mail address: judific od diss dir. (I. Pedersen).

Exotic foods

- Simplified procedure
- Notification to EC
 - Name, description, composition, origin
 - Documented history of safe use
 - Instructions of use

- EC to EFSA and MS
 - 4 months science based objections
- No objections → on the list
- Objections → application needed

 Wegeningen

 (ity of inserts

Possible cooperation?

- At Wageningen University
 - New project to submit exotic foods dossiers

- Export opportunities from China?
 - Traditional Chinese foods unknown in EU?
 - Product characteristics
 - Evidence of history of use

Nanotechnology

- Problem defies definition
- any intentionally produced material that has one or more dimensions of the order of 100 nm or less or that is composed of discrete functional parts, either internally or at the surface, many of which have one or more dimensions of the order of 100 nm or less, including structures, agglomerates or aggregates, which may have a size above the order of 100 nm but retain properties that are characteristic of the nanoscale.

WAGENINGEN UNIVERSITY & RESEARCH

Governing Nano Foods

Principles-Based Responsive Regulation

EFFoST Critical Reviews #3

Bernd van der Meulen, Harry Bremmers, Kai Purnhagen, Nidhi Gupta, Hans Bouwmeester, L. Leon Geyer

Data protection

- Authorisation exclusive for 5 years, if based on
 - Recently developed scientific evidence or data
 - Proprietary
 - Exclusive right of use
 - Necessary for authorisation

- Not applicable to exotic foods
- Request confidentiality
 - Verifiable reasons
 - 6 weeks to withdraw application

Proprietary?

- Rationale: investment
- Interpretation EC. (at claims): secret
- Problem:
 - Against rationale
 - Unscientific

Publish and Perish: A Disturbing Trend in the European Union's Regulation of Nutrition Health Claims Made on Foods

by Susan Carlson, Ricardo Carvajal, Nicole Coutrelis, Jehan-Francois Desjeux, Lorenzo Morelli, Peter Van Dael, Bernd van der Meulen, Annemieke Tops, Cathy Weir

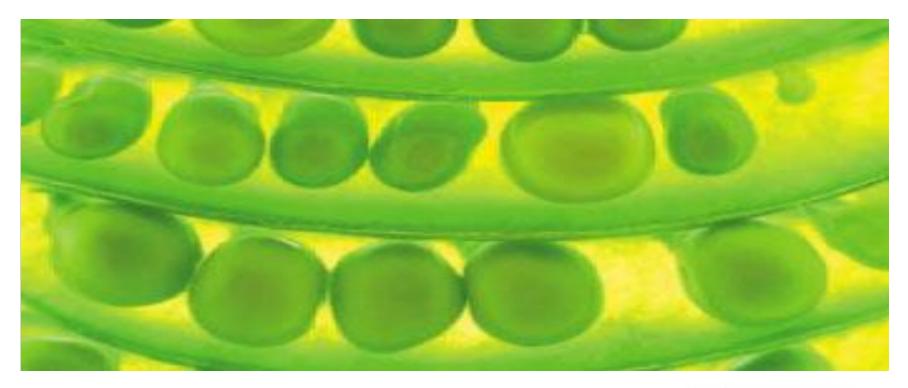
ecent developments in the European Union's regulation on health datum used in food labeling could have the effect of suppressing publication of scientific research on the health benefits of food substances. Given that scientific research and collaboration is an international phenomenon, the negative effect of the European Commission's (the Commission) current direction might well be felt in the United States.

The seeds of this controversy were sown in December 2006, when the European Parliament issued Regulation (EC) No 1924/2006, which stipulates the circumstances under which health claims may be made for foods marketed in the European Union. At the outset, it important to note that the definition of "health claim" as that term is used in EU regulations is considerably broader than the definition of "health claim" in the Federal Food, Drug, and Gosmetic Act and its implementing regulations. The EU health claims regulation defines health claim "as "any claim that states,

suggests or implies that a relationship exists between a food category, a food or one of its constituents and health." This EU definition of "health claim"

(hereinafter "EU health claim") is sufficiently broad as to encompass several different types of claims that can be made for foods marketed in the United States. including: (1) "health claims," defined as claims that expressly or impliedly characterize the relationship of a nutrient required to be included in nutrition labeling to a disease or a health-related condition; and (2) "structure/function claims," defined as claims that describe "the role of a mutrient or dietary ingredient intended to affect normal structure or function in humans," or that characterize "the documented mechanism by which a nutrient or dietary ingredient acts to maintain such structure or function." Thus, developments in the regulation of EU health claims have the potential to alter the landscape in the United States for both health clatms and structure/ function claims

The EU health claims regulation requires that new health claims (i.e., those not already on a list of approved claims) be the subject of a premarket approval application that includes relevant scientific studies and other information.



From Ieff, Jehan-Francois Desjeux, Nicole Coutrelle, Peter Van Dael, Cathy Weir, Annemieke Tops, Susan Carlege, Lorenzo Morelli, Ricardo Carvajal, Bernd van der Meulen.

WAGENINGEN UNIVERSITY & RESEARCH

Setumber/Ocider 2010

GMOs

Most used commercial applications of GM crops

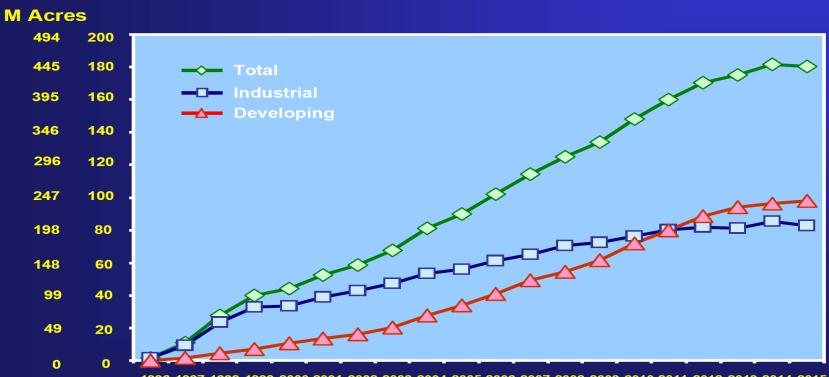
Herbicide-resistant plants

Advantages: better weed control, less tillage Soybeans, corn, rice, wheat

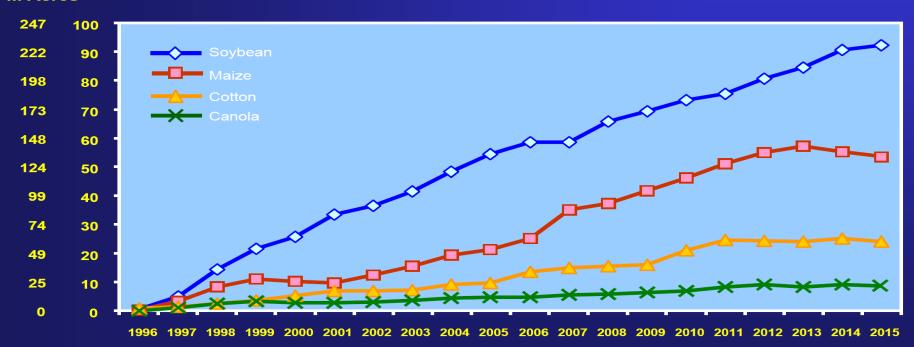
Pest-resistant plants

Resistant to certain insects

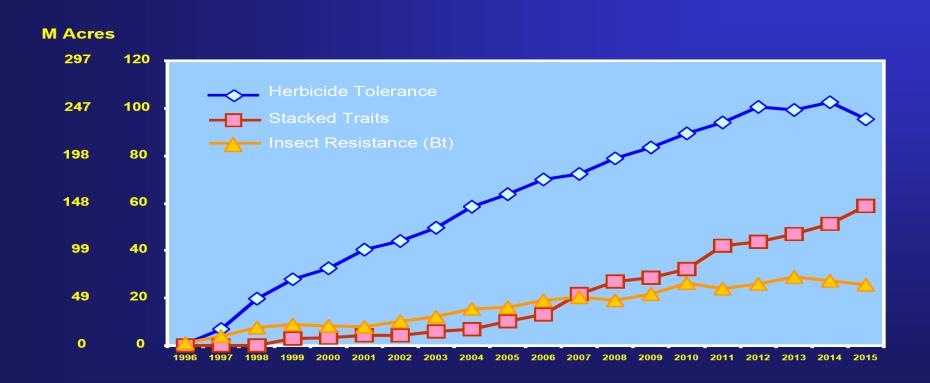
Advantage: less insecticide required, better yield, reduce financial loss for farmers


Corn, cotton, potatoes

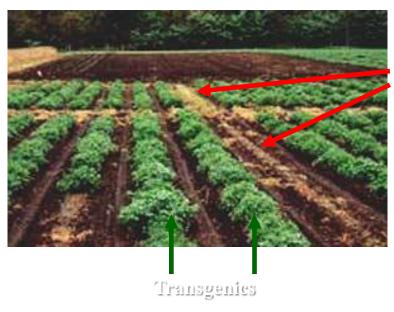
Global Area of Biotech Crops, 1996 to 2015: Industrial and Developing Countries (M Has, M Acres)


1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Global Area of Biotech Crops, 1996 to 2015: By Crop (Million Hectares, Million Acres)



Source: Clive James, 2015


Global Area of Biotech Crops, 1996 to 2015: By Trait (Million Hectares, Million Acres)

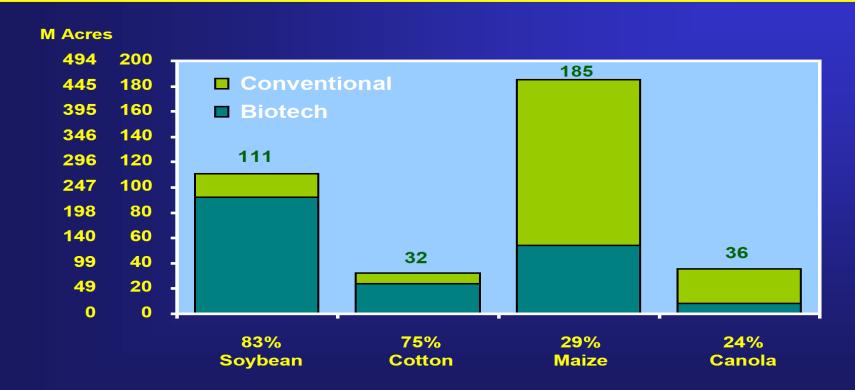
Source: Clive James, 2015

Herbicide Resistance

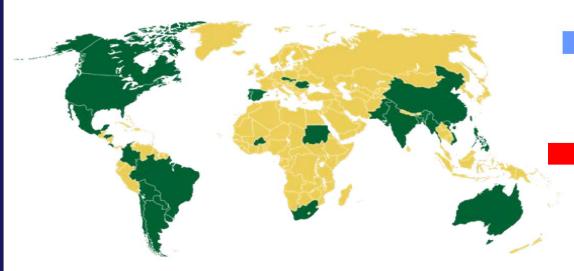
Non-tranagenica

Insect Resistance

Transgenic

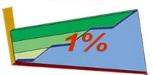

Non-transgenic

Global Adoption Rates (%) for Principal Biotech Crops (Million Hectares, Million Acres), 2015



Source: Clive James, 2015 Hectarage based on FAO Data for 2013.

Global Area (Million Hectares) of Biotech Crops, 2015: by Country


Biotech Mega Countries

50,000 hectares (125,000 acres), or more

Million Hectares

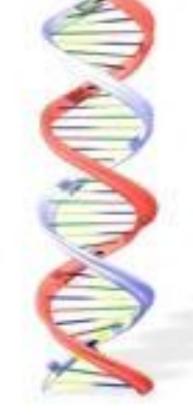
1.	USA	70.9
2.	Brazil*	44.2
3.	Argentina*	24.5
4.	India*	11.6
5.	Canada	11.0
6.	China*	3.7
7.	Paraguay*	3.6
8.	Pakistan*	2.9
9.	South Africa*	2.3
10.	Uruguay*	1.4
11.	Bolivia*	1.1
12.	Philippines*	0.7
13.	Australia	0.7
14.	Burkina Faso*	0.4
15.	Myanmar*	0.3
16.	Mexico*	0.1
17.	Spain	0.1
18.	Colombia*	0.1
19.	Sudan*	0.1

Marginal Decrease from 2014

28 countries which have adopted biotech crops

In 2015, global area of biotech crops was 179.7 million hectares, representing a marginal decrease of 1% from 2014, equivalent to 1.8 million hectares.

Less than 50,000 hectares


Slovakia Costa Rica* Bangladesh* Romania

Source: Clive James, 2015.

EU regulatory framework

- Regulation 178/2002
- Directive 2001/18
- Regulation 1829/2003
- Regulation 1830/2003
- Regulation 641/2004
- Coexistence guidelines

Pre-market approval

- 'One-door-one-key'
 - EU-wide authorisation
 - Environment & food safety risk assessment
 - Food & feed

Criteria

- No adverse health effects
- Not misleading the consumer
- Not nutritionally disadvantageous

Authorisation procedure

- Application
 - With national authority: 14 days →
- Risk assessment
 - EFSA (independent scientific) 6 months →
 - Opinion, if favourable
- Commission
 - Draft decision to PAFF (SCoFCAH)
 - Favourable opinion → final decision by Commission
 - Otherwise → Council by qualified majority (3 months)

Authorisation

- Valid throughout the EU; for 10 years
- Entry in public registry
- Withdrawal
 - Opinion EFSA
 - Decision Commission
- Renewable
 - 10 years

EU register of genetically modified food and feed

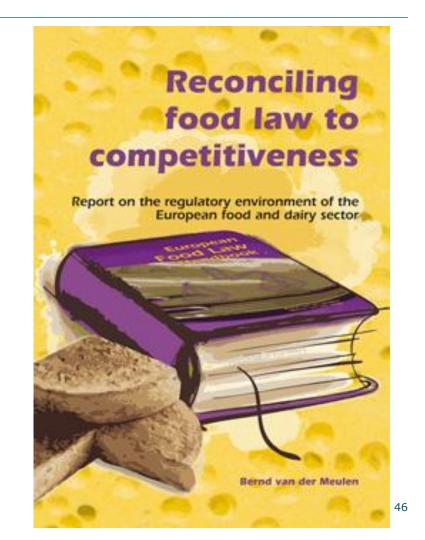
Genetically modified maize						
	Transformation event Unique ID Company	Genes Introduced / Characteristics	Authorized use	Authorization Expiration Date	Details	
	Maize (Bt11) SYN-BT Ø11-1 [Syngenta]	Genetically modified maize that contains: the cry1A (b) gene inserted to confer insect-resistance the pat gene inserted to confer tolerance to the herbicide glufosinate-	Foods and food ingredients containing, consisting of, or produced from SYN-BTØ11-1xMON-ØØØ21-9			
		ammonium	Feed containing, consisting of, or produced from SYN-BTØ11-1xMON-ØØØ21-9	27/07/2020	Q	
http://ec.europa.eu/fo	od/dyna/gm re	gister/index	Products other than food and feed containing SYN-BTØ11- 1xMON- ØØØ21-9			
UNIVERSITY & RESEARCH	Maize (DAS59122)	Genetically modified maize that contains:	Foods and food ingredients			

Labelling requirements

- All ingredients must be mentioned on the label
- Additives: by name or e-number
- Novel foods: specificity regarding
 - Composition
 - Nutrition
 - Intended use
- GMOs: as such

Pre-market authorisation decision tree

No → food law does not apply: approval schemes may apply under feed law, food contact Is it a food? materials law or pharmaceutical law Yes Yes \rightarrow Reg. (EC) 1829/2003 Is the food genetically modified? No **Enzyme** Yes \rightarrow Reg. 1332/2008 Is the substance normally consumed as a food? **Flavour** Yes \rightarrow Reg. 1334/2008 No Yes (other) Tech. function Yes \rightarrow Reg. 1333/2008 Does the food have a history of safe use in the EU prior to 15-5-1997? No \rightarrow Reg. 2015/2283 Yes Is it a concentrated source of vitamins or minerals intended to supplement the normal diet? Yes \rightarrow Dir. 2002/46 For all foods: Does the food claim properties due to the amount of energy or nutrients it contains? Yes \rightarrow Reg. 1924/2006 Does the food claim an effect on health? Yes \rightarrow Reg. 1924/2006



Experiences and problems

- Unclear
- Unpredictable
- Expensive
- Time consuming
- Political application
- Can be manipulated
 - CJEU refusal of authorisation affects only parties (Stevia)

Business strategies

- Avoidance
 - Abandon innovation
- Compliance
- Monopolisation
 - Procedures
 possible for limited
 number of businesses
 - Exclusive rights
- Circumvention
 - Do but don't tell...
- Infringement
 - Sell explicitly banned products

Thank you for your kind attention

Q&A

Bernd.vanderMeulen@wur.nl

